If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+u=15
We move all terms to the left:
4u^2+u-(15)=0
a = 4; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·4·(-15)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{241}}{2*4}=\frac{-1-\sqrt{241}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{241}}{2*4}=\frac{-1+\sqrt{241}}{8} $
| 3x-9=x+7= | | 2v=v+90 | | 587000+0.10x+0.15x=x | | 3-7x-4x^2=0 | | 4x²-32x=-28 | | 1x/3=x-8 | | 4x+32x=-28 | | 0.5+10x=-8.3+2 | | 11w-(3w-4)=20 | | 18-2=8x | | x^2+2x+720=0 | | 25-3a=7 | | (x−4)^2,64=10 | | (x−4)^2,64−10=0 | | 11+7n=53 | | 4(3x+5)=13 | | 5x+3x+9=45วิธีทำ | | 3x-4=92 | | 5(y+3)-2(2y-5)=12 | | (D^2+4D+3)y=0 | | (D^2-4D-5)y=0 | | (D²-4D+4)y=0 | | z^2+(z+4)^2=10 | | x²+4x+3x+12=0 | | 3x-30=-2x | | (6x-4)-(4x+4)=10 | | 3h-7=16 | | x^2,3=0.7 | | 2x^2-20000=0 | | Y=20^3-50^2-40x+35 | | 6y-4=13-y | | (3z/10)+3=5 |